Leading the way to a cure


Inhibitors of TLR-9 Act on Multiple Cell Subsets in Mouse and Man In Vitro and Prevent Death In Vivo from Systemic Inflammation - Franck J. Barrat Ph.D.

February 7, 2005

In parallel with the discovery of the immunostimulatory activities of CpG-containing oligodeoxynucleotides, several groups have reported specific DNA sequences that could inhibit activation by CpG-containing oligodeoxynucleotides in mouse models. We show that these inhibitory sequences, termed IRS, inhibit TLR-9-mediated activation in human as well as mouse cells. This inhibitory activity includes proliferation and IL-6 production by B cells, and IFN- and IL-12 production by plasmacytoid dendritic cells. Our studies of multiple cell types in both mice and humans show the optimal IRS to contain a GGGG motif within the sequence, and the activity to require a phosphorothioate backbone. Although the GGGG motif readily itself leads to formation of a tetrameric oligodeoxynucleotide structure, inhibitory activity resides exclusively in the single-stranded form. When coinjected with a CpG oligodeoxynucleotide in vivo, IRS were shown to inhibit inflammation through a reduction in serum ctyokine responses. IRS do not need to be injected at the same site to inhibit, demonstrating that rapid, systemic inhibition of TLR-9 can be readily achieved. IRS can also inhibit a complex pathological response to ISS, as shown by protection from death after massive systemic inflammation induced by a CpG-containing oligodeoxynucleotides.


Read the Full article here

Source: Alliance for Lupus Research
Funded Research

1.5 million

people in the U.S. have Lupus.

172 million

dollars committed to lupus research by the Lupus Research Alliance.

We're walking across the United States to raise awareness and funds for lupus research.


Show your support by visiting the Lupus Research Alliance online store. Discover the perfect gift, or prepare for a walk with our selection of apparel and accessories.

Powered by Blackbaud
nonprofit software